

Addukt eines fünfgliedrigen Trischwefeldistickstoffdioxid-Rings an Titantetrachlorid

Herbert W. Roesky*, Jürgen Schimkowiak, Hans-Georg Schmidt, Mathias Noltemeyer und George M. Sheldrick

Institut für Anorganische Chemie der Universität Göttingen, Tammannstraße 4, D-3400 Göttingen

Eingegangen am 9. Februar 1990

Key Words: Sulphur – nitrogen ring / Titanium

Adduct of a Five-Membered Trisulfurdinitrogen Dloxide Ring with Titanium Tetrachloride

Reaction of $S_6N_4O_4$ with TiCl₄ leads to $[(S_3N_2O_2)TiCl_4]_2$ (2). Single crystals of 2 were obtained by recrystallization from liquid SO₂. 2 forms chains of five-membered $S_3N_2O_2$ rings con-

Die fünfgliedrigen Ringsysteme $S_3N_2^{\oplus 1}$, $S_3N_2Cl^{2}$ oder $S_3N_2O^{3}$ sind seit langem bekannt und durch Strukturanalysen eindeutig gesichert. So beobachtet man beim $7-\pi$ - $S_3N_2^{\oplus}$ -Gerüst¹⁾ eine Dimerisierung über Schwefel-Schwefel-Kontakte. 1984 hatten wir über die Reaktion von $O_2S[N(SiMe_3)_2]_2$ mit SCl₂ zum S₆N₄O₄ und dessen Umsetzung mit TiCl₄ berichtet⁴⁾. Aufgrund von massenspektrometrischen Untersuchungen und in Analogie zur S₃N₂^{\oplus}-Struktur wurde ein Dimeres 1, das über Schwefel-Schwefel-Bindungen verknüpft ist, formuliert.

Wir haben die Untersuchungen erneut aufgenommen, um die Ergebnisse durch Strukturuntersuchungen abzusichern. Einkristalle des TiCl₄-Adduktes von 1 erhält man durch Umkristallisieren aus flüssigem Schwefeldioxid. Die Einkristallstrukturanalyse liefert ein Dimeres 2 der angegebenen Zusammensetzung $[(S_3N_2O_2)TiCl_4]_2$, aber Schwefel-Kontakte treten nicht auf.

In 2 bildet das $S_3N_2O_2$ einen fünfgliedrigen Ring mit exocyclisch angeordneten Sauerstoff-Atomen. Eine Verbindung der Zusammensetzung $S_3N_2O_2$ wurde bereits 1953 von Goehring und Heinke⁵) beschrieben und von Weiss⁶ strukturell aufgeklärt, dabei handelt es sich um das acyclische S(NSO)₂ (3).

Verschiedene Arbeiten zeigen, daß 3 als Edukt für cyclische^{7,8)} oder acyclische⁹⁾ Schwefel-Stickstoff-Verbindungen oder als Ligand für Übergangsmetalle¹⁰⁾ eingesetzt werden kann. Eine Isomerisierung von 2 nach 3 haben wir nicht beobachtet. Die fünfgliedrigen Ringe in 2 lassen sich nicht einfach durch eine Beschreinected by Ti_2Cl_8 units. The S_2N_2 part of the five-membered ring may be described as a 6- π electron system.

bung nach Lewis deuten, vielmehr würde man eine acyclische Struktur 4 formulieren.

Die treibende Kraft für die Cyclisierung könnte die Ausbildung des 6- π -N₂S₂-Gerüsts in 5 sein, das durch die elektronenziehende Wirkung der SO₂-Gruppe und der Lewis-Säure TiCl₄ stabilisiert wird. Alle theoretischen Berechnungen an Schwefel – Stickstoff-Heterocyclen zeigen, daß die π -MO-Energiezustände im Vergleich zu den Kohlenwasserstoff-Analogen niedrigere Energie haben, so daß die π^* -Molekülorbitale zusätzliche Elektronen aufnehmen können. Im Falle des S₂N₂-Systems sind 3 der 4 π -Orbitale besetzt¹²). Die S – S-Bindungslänge [S(2) – S(3) 203.4(1) pm] (Tab. 1) entspricht einer Einfachbindung wie sie vergleichsweise im S₈-Molekül¹²) beobachtet wird. Im Vergleich zu den [S₃N₂]^{\oplus}-Derivaten ist in **2** der S – S-Abstand merklich kürzer¹). Die S – N-Abstände sind ähnlich denen im [Ag(S₄N₄O₂)₄]^{\oplus} [AsF₆]^{\oplus 13}]. Lediglich intermolekulare Wechselwirkungen findet man zwischen S(2)… O(2a) (286.6 pm)

Abb. 1. Struktur von $[(S_3N_2O_2)TiCl_4]_2$ (2) im Kristall; es werden drei Moleküle abgebildet, um die intermolekularen Wechselwirkungen zu zeigen

Chem. Ber. 123 (1990) 1345-1346 © VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1990 0009-2940/90/0606-1345 \$ 02.50/0

und $S(3) \cdots O(2a)$ (292.0 pm), die zu Kettenbildung entlang x führen (Abb. 1). Der N₂S₂-Teil des fünfgliedrigen S₃N₂O₂-Rings ist innerhalb ± 0.5 pm planar, während S(1) um 22.7 pm davon abweicht. Atomkoordinaten werden in Tab. 2 mitgeteilt.

Tab. 1. Bindungslängen [pm] und -winkel [°] von [(S₃N₂O₂)TiCl₄]₂ (2)

Ti-Cl(1) 2	50.4 (1)	Ti-C1(2)	220.6 (1)
Ti-Cl(3) 2	19.0 (1)	T1-C1(4)	223.4 (1)
Ti-O(1) 2	14.4 (2)	Ti-Cl(lA)	244.4 (1)
Cl(1)-TiA 2	44.4 (1)	S(1)-N(1)	161.8 (2)
S(1)-N(2) 1	.63.1 (2)	S(1)-O(1)	143.9 (2)
\$(1)-0(2) 1	42.0 (2)	S(2)-S(3)	203.4 (1)
S(2)-N(1) 1	.56.7 (2)	S(3)-N(2)	156.2 (2)
C1(1)-Ti-C1(2)	168.0(1)	Cl(1)-Ti-Cl(3)	90.7(1)
C1(2)-Ti-C1(3)	98.4(1)	Cl(1)-Ti-Cl(4)	89.0(1)
C1(2)-Ti-C1(4)	97.5(1)	Cl(3)-Ti-Cl(4)	97.2(1)
C1(1)-Ti-O(1)	81.3(1)	C1(2)-Ti-O(1)	88.9(1)
C1(3)-Ti-O(1)	170.6(1)	C1(4)-T1-O(1)	87.7(1)
C1(1)-Ti-C1(1A)	80.1(1)	C1(2)-Ti-C1(1A)	91.5(1)
C1(3)-Ti-C1(1A)	93.0(1)	C1(4)-Ti-C1(1A)	165.2(1)
0(1)-Ti-C1(1A)	80.8(1)	Ti-Cl(l)-TiA	99.9(1)
N(1) - S(1) - N(2)	103.9(1)	N(1) - S(1) - O(1)	107.6(1)
N(2) - S(1) - O(1)	108.6(1)	N(1) - S(1) - O(2)	111 2(1)
N(2) - S(1) - O(2)	110 9(1)	0(1) - S(1) - 0(2)	114 2(1)
S(3) - S(2) - N(1)	99.5(1)	S(2) - S(3) - N(2)	99 8(1)
S(1) = N(1) = S(2)	117 5(1)	S(1) - N(2) - S(3)	117 2(1)
T(-0(1)-S(1))	153.6(1)	S(1) - S(2) - S(3)	11, .2(1)
11-0(1)-3(1)	133.0(1)		

Tab. 2. Atomkoordinaten (× 10⁴) und äquivalente isotrope Temperaturfaktoren (× 10⁻¹) [pm²]; äquivalente isotrope U berechnet als ein Drittel der Spur des orthogonalen U_{ii} -Tensors

	x	У	Z	U(eq)
Ti	-387(1)	11277(1)	-1407(1)	24(1)
C1(1)	2062(1)	9547(1)	-602(1)	29(1)
C1(2)	-3110(1)	12333(1)	-2037(1)	42(1)
C1(3)	1908(1)	13717(1)	-302(1)	40(1)
C1(4)	1157(1)	11310(1)	-3321(1)	36(1)
S(1)	-3506(1)	7279(1)	-3314(1)	24(1)
S(2)	-7872(1)	5943(1)	-3045(1)	36(1)
S(3)	-7402(1)	7649(1)	-4396(1)	36(1)
N(1)	-5435(3)	5874(3)	-2736(2)	38(1)
N(2)	-4849(3)	8040(3)	-4421(2)	36(1)
0(1)	-2456(3)	8686(2)	-2228(2)	39(1)
0(2)	-2031(3)	6455(3)	-3924(2)	46(1)

Ein Protonen-haltiges Produkt können wir aufgrund von IR-Daten und Differenz-Fourier-Synthesen ausschließen. Eine Verfeinerung mit vertauschten Streufaktoren für O und N lieferte nicht akzeptable Temperaturparmeter und bestätigte so die Zuordnung dieser Atome.

Eine vergleichbare Dimerisierung des Titantetrachlorids über Chloro-Brücken und eine trans-Koordination des Liganden über Sauerstoff-Atome findet man im $[TiCl_4OPCl_3]_2^{14}$.

Zusammenfassend kann man festhalten, daß durch die Koordination der Lewis-Säure nicht das acyclische Isomer 4 sondern die cyclische Form begünstigt ist. Diese Tatsache wirft für weitere Untersuchungen die Frage auf, ob auch andere Elementgruppierungen wie \ge S-Einheiten unter Ausbildung einer Schwefel-Schwefel-Bindung cyclisieren.

Diese Arbeit wurde durch die Deutsche Forschungsgemeinschaft, die VW-Stiftung und den Fonds der Chemischen Industrie unterstützt.

Experimenteller Teil

Über die Darstellung und Charakterisierung von [(S₃N₂O₂)Ti-Cl₄]₂ haben wir berichtet⁴). Einkristalle von 2 erhielten wir durch Umkristallisieren aus flüssigem SO2 in einer modifizierten Schlenk-Apparatur.

Einkristall-Strukturanalyse von 2^{15} : Raumgruppe $P\overline{1}$; a =633.1(1), b = 801.3(1), c = 1010.6(2) pm; $\alpha = 97.35(1)$, $\beta =$ 94.49(1), $\gamma = 106.07(1)^{\circ}$; $V = 0.4851 \text{ nm}^3$; Z = 1, $\rho_{\text{ber.}} = 2.37$ Mgm⁻³; μ (Mo- K_{α}) = 2.57 mm⁻¹. 2200 Reflexe wurden mit einem Siemens-Stoe-Vierkreisdiffraktometer bis $2\Theta_{max} = 45^{\circ}$ gemessen. Kristallgröße $0.4 \times 0.4 \times 0.7$ mm; 1250 symmetrieunabhängige Reflexe mit $F > 3\sigma(F)$ zur Strukturlösung und Verfeinerung verwendet. $R = 0.019, R_w = 0.033, w^{-1} = \sigma^2(F_0) + 0.0001 F_0^2$; verwendete Programme: SHELXS-86 und SHELX-76¹⁶⁾.

- ²⁾ R. W. H. Small, A. J. Banister, Z. V. Hauptman, J. Chem. Soc., Dalton Trans. 1984, 1377.
- ³⁾ H. W. Roesky, M. Kuhn, J. W. Bats, Chem. Ber. 115 (1982) 3025; H. W. Roesky, M. Thomas, J. W. Bats, H. Fuess, J. Chem. Soc., Dalton Trans. 1983, 1891; H. W. Roesky, M. Thomas, J. Schimkowiak, M. Schmidt, M. Noltemeyer, G. M. Sheldrick, J. Chem. Soc., Chem. Commun. 1982, 790.
- ⁴⁹ H. W. Roesky, R. Emmert, T. Gries, *Chem. Ber.* 117 (1984) 404.
 ⁵¹ M. Goehring, J. Heinke, Z. Anorg. Allg. Chem. 272 (1953) 297.
 ⁶¹ J. Weiss, Z. Naturforsch., Teil B, 16 (1961) 477.
 ⁷¹ D. Grief, Carbon C. Carbon C. Anorg. Allg. Chem. 262

- ⁷⁾ D. Schläfer, M. Becke-Goehring, Z. Anorg. Allg. Chem. 362 (1968) 1.
- ⁸⁾ J. Weiss, R. Mews, O. Glemser, J. Inorg. Nucl. Chem. 38 (1976) 213
- ⁹⁾ H. W. Roesky, W. Schaper, Chem. Ber. 107 (1974) 3451.
- ¹⁰⁾ H. W. Roesky, M. Thomas, P. G. Jones, W. Pinkert, G. M. Sheldrick, J. Chem. Soc., Dalton Trans. 1983, 1211.
- ¹¹⁾ T. Chivers, Chem. Rev. 85 (1985) 341.
- ¹²⁾ Y. Watanabe, Acta Crystallogr., Sect. B, 30 (1974) 1396; D. E. Sands, J. Am. Chem. Soc. 87 (1965) 1395.
- ¹³⁾ H. W. Roesky, M. Thomas, H.-G. Schmidt, W. Clegg, M. Noltemeyer, G. M. Sheldrick, J. Chem. Soc., Dalton Trans. 1983, 405.
 ¹⁴⁾ C. I. Brändén, I. Lindqvist, Acta. Chem. Scand. 14 (1960) 726.
- ¹⁵⁾ Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-54418, der Autorennamen und des Zeitschriftenzitats angefor-
- dert werden. ^{16) 16a)} G. M. Sheldrick, SHELX-76, Cambridge 1976. ^{16b)} G. M. Sheldrick, SHELXS-86, Göttingen, 1986.

[59/90]

¹⁾ A. J. Banister, H. G. Clarke, I. Rayment, H. M. M. Shearer, Inorg. Nucl. Lett. 10 (1974) 647; H. W. Roesky, M. Witt, J. Schim-kowiak, M. Schmidt, M. Noltemeyer, G. M. Sheldrick, Angew. Chem. 94 (1982) 541; Angew. Chem. Int. Ed. Engl. 21 (1982) 538; R. J. Gillespie, J. P. Kent, J. F. Sawyer, Inorg. Chem. 20 (1981) 3784; B. Krebs, G. Henkel, S. Pohl, H. W. Roesky, Chem. Ber. 113 (1980) 226.